If it's not what You are looking for type in the equation solver your own equation and let us solve it.
g^2-16g+14=0
a = 1; b = -16; c = +14;
Δ = b2-4ac
Δ = -162-4·1·14
Δ = 200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{200}=\sqrt{100*2}=\sqrt{100}*\sqrt{2}=10\sqrt{2}$$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-10\sqrt{2}}{2*1}=\frac{16-10\sqrt{2}}{2} $$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+10\sqrt{2}}{2*1}=\frac{16+10\sqrt{2}}{2} $
| u/2+6=13 | | −4.75=2/z | | 49×n=42 | | -4=-4(u+3) | | -2-8.9p=-10.7p-9.74 | | 98+92+3x+x+94=360 | | 0.5m-2.5=5/4m+2 | | -3=4x+16-x | | 8a-4=4a-4 | | x/3+x/5=3 | | 2a-7÷4=-1/3 | | 84+73+58+(x+69)=360 | | 2x+8=3(x+6)-x | | 2/3k+1/4=-1/5+1/2k | | y/4-4=-20 | | 7n+27=8n+5(n-3) | | a/7+1=10 | | -9(x-7)=3(x | | a÷7+1=10 | | -40=w/5 | | -v/5=-53 | | 105=7(1-7r) | | .50x+.75x+.85x=700 | | 2x+67+58+(x+64)=360 | | .5x+.75x+.85x=400 | | 63=18v-9v | | 88=-2(5-7n) | | 4x-2-4=16 | | -5/3x+35=50 | | (x+5)(x+10)=176 | | -4x+7x-9=3(x-2)-7 | | 5x=100-45 |